

Grado en Física (curso 2025-26)

Física Cuántica I		Código	800503	Curso	2°	Sem.	2°
Módulo	Formación General	Materia	Física Cuántica y Estadística	Tipo	obligatorio		1

	Total	Teóricos	Prácticos
Créditos ECTS	6	3.5	2.5
Horas presenciales	55	30	25

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

- Adquirir el concepto de función de onda y las bases de la descripción de los fenómenos cuánticos mediante la ecuación de Schrödinger.
- Resolver problemas unidimensionales y tridimensionales con simetría esférica (átomo de hidrógeno, oscilador armónico).

Breve descripción de contenidos

Origen y bases experimentales de la Física Cuántica. Formalismo matemático: estados y observables. Ecuación de Schrödinger: potenciales unidimensionales y tridimensionales. Oscilador armónico y átomo de hidrógeno.

Conocimientos previos necesarios

Para cursar la asignatura con aprovechamiento es imprescindible dominar los conceptos y técnicas matemáticas que se enseñan en las asignaturas de Álgebra y Cálculo de primer curso, y Métodos Matemáticos I de primer cuatrimestre de segundo curso. Asimismo, son también necesarios los conocimientos adquiridos en las asignaturas de Mecánica Clásica y Electromagnetismo I.

Profesor/a	José	Dpto.	FT			
coordinador/a	Despacho	03.310.0	e-mail	cem	bra@ucr	n.es

	Teoría/Prácticas - Detalle de horarios y profesorado									
Grupo	Aula	Día	Horario	Horario Profesor		horas	T/P	Dpto.		
Α	9	L,M J	10:30 – 12:00 11:00 – 12:00	Clara Peset Martín	Todo el semestre	55	T/P	FT		
B (inglés)	19	Mo,Tu Fr	9:00 – 10:30 9:00 – 10:00	Artemio González López	Full Term	55	T/E	FT		
С	11	X V	15:00 - 17:00 16:00 - 18:00	Artemio González López	Todo el semestre	55	T/P	FT		

D	9	L M	17:00 – 18:30 16:30 – 17:30	José Luis Blázquez Salcedo	Todo el semestre	45	T/P	ЕТ
b	9	J	J 15:30 – 17:00 Pablo Navarro Moreno		Todo el semestre	10	Р	гі
Е	11	M V	10:00 – 12:00 9:00 - 11:00	José Alberto Ruiz Cembranos	Todo el semestre	55	T/P	FT

T:teoría, P:prácticas

	Tutorías								
Grupo	Profesor	horarios	e-mail	Lugar					
Α	Clara Peset Martín	L: 12:00-13:30 M: 12:00 -14:00 + 3 horas online	cpeset@ucm.es	02.314.0					
В	ESTE GRU	PO SE IMPARTE EN INC	CLÉS (ver ficha correspondiente)						
С	Artemio González López	M,J: 11:00-13:00 + 2 horas online	artemio@fis.ucm.es	02.307.0					
	Jose Luis Blázquez Salcedo	M: 11:00-13:00 X: 10:00-12:00 + 3 horas online	joseluis.blazquez@fis.ucm.es	03.304.0 bis					
D	Pablo Navarro Moreno	1er. semestre M: 15:00-17:00 2º semestre L: 15:00-17:00	panava03@ucm.es	03.328.0					
E	José Alberto Ruiz Cembranos	M: 12:00-13:00 V: 11:00-13:00 +3h online	cembra@ucm.es	03.310.0					

Programa teórico de la asignatura

- 1. Bases experimentales de la Física cuántica. Radiación del cuerpo negro e hipótesis de Planck. Efecto fotoeléctrico. Dispersión Compton. Modelo atómico de Bohr. Principio de de Broglie. Dualidad onda partícula. Experimento de la doble rendija.
- 2. **Ecuación de Schrödinger.** La ecuación de Schrödinger. La función de onda y su interpretación probabilista. Ecuación de continuidad. Valores esperados de variables dinámicas y el teorema de Ehrenfest. Observables y operadores autoadjuntos. Autoestados y autovalores. La representación en espacio de momentos. Paquetes de ondas. Relaciones de indeterminación de Heisenberg.
- 3. **Problemas unidimensionales.** Estados estacionarios y ecuación de Schrödinger independiente del tiempo. Estados ligados y de colisión. Pozos y barreras de potencial. Coeficientes de reflexión y transmisión. Efecto túnel. El espectro de un potencial unidimensional general.
- 4. **Formalismo de la Mecánica cuántica.** Espacios de Hilbert. Vectores y estados físicos. Notación de Dirac. Medidas y probabilidad. Evolución temporal y constantes de movimiento. Observables compatibles.
- 5. **El oscilador armónico unidimensional.** Resolución mediante serie de potencias y polinomios de Hermite. Espectro y funciones de onda para los estados ligados. Operadores creación y destrucción. Resolución algebraica.
- 6. **Problemas tridimensionales.** Separación de variables en coordenadas cartesianas: pozo infinito y oscilador armónico. Potenciales centrales y separación de variables en coordenadas esféricas. Momento angular y armónicos esféricos. Ecuación radial. Pozo esférico infinito y oscilador armónico isótropo. Átomo de hidrógeno: energías y funciones de onda para los estados ligados.

Bibliografía

Básica

- 1. C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, vol. 1, 2nd ed. Wiley-Blackwell, Berlin, 2019.
- 2. D. J. Griffiths. Introduction to Quantum Mechanics. Nueva York 1995. Ed. Prentice Hall.
- 3. C. Sánchez del Rio (coord.), Física Cuántica, 7ª ed. Pirámide, Madrid, 2020.
- 4. L. E. Schiff, Quantum Mechanics, 3rd ed. McGraw-Hill, New York, 1968.
- 5. S. Gasiorowicz. Quantum Physics. Nueva York 2003. Ed. John Wiley.

Complementaria

- 1. F. Constantinescu and E. Magyari, Problems in Quantum Mechanics. Pergamon Press, London, 1971.
- 2. S. Flugge. Practical Quantum Mechanics. Ed. Springer. 1999.
- 3. L. Landau, E. Lifshitz. Quantum Mechanics. Londres 1958. Ed. Pergamon Press.
- 4. A. Messiah, Quantum Mechanics. Dover, New York, 1994.
- 5. R. Shankar, Principles of Quantum Mechanics, 2nd ed. Springer, New York, 2008.
- 6. S. Weinberg, Lectures on Quantum Mechanics, 2nd ed. Cambridge University Press, Cambridge
- 7. I. I. Goldman, V. D. Krivchenkov. Problems in Quantum Mechanics. Nueva York 1993. Ed. Dover.
- 8. A. Galindo, P. Pascual. Mecánica Cuántica. Madrid 1999. Eudema.

Recursos en internet

Campus virtual UCM o/y páginas web mantenidas por los profesores.

Metodología

- A) Clases de teoría y problemas con los siguientes objetivos:
 - Explicar los resultados experimentales fundamentales que originan el desarrollo de la Física Cuántica y los conceptos que ésta introduce.
 - Enseñar los métodos de cálculo básicos de la Física Cuántica.
 - Mediante la resolución de ejercicios y discusión de ejemplos, desarrollar en el alumno el dominio de las ideas cuánticos.
- B) Se entregarán a los alumnos hojas de problemas con enunciados para que se ejerciten y adquieran el dominio de los contenidos de la asignatura.
- C) Se estimulará la discusión y la participación en tutorías.

Evaluación

Realización de exámenes

Peso:

70%

El examen final consistirá de un número de problemas prácticos y/o cuestiones teóricas de dificultad similar al contenido de las clases.

La corrección del examen final dará lugar a una calificación F cuyo valor estará comprendido entre 0 y 10 puntos.

Otras actividades

Peso:

30%

Se podrá realizar una prueba escrita a mitad de curso. Si el desarrollo del temario y el tiempo lo permite, queda a juicio del profesor de cada grupo plantear además otras actividades, como presentación de trabajos, preguntas en clase, etc. Este apartado contará con una calificación C comprendida entre 0 y 10 puntos.

Calificación final

La calificación C sólo se tendrá en cuenta si la nota del examen final, F, es mayor o igual a 3.5. En ese caso, la calificación final se calculará de acuerdo con la siguiente fórmula:

Calificación final = Máximo{F , 0.7xF + 0.3xC }